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The stress distribution in a random polycrystalline material (Alloy 600) was studied using 
a topologically correct microstructural model. The distributions of von Mises and hydrostatic 
stresses, which could be important factors when studying the intergranular stress corrosion 
cracking, at the grain vertices were analysed as a function of microstructure, grain orientations 
and loading conditions. The grain size, shape, and orientation had a more pronounced effect 
on stress distribution than the loading conditions. The stress concentration factor was 
higher for hydrostatic stress (1.7) than for von Mises stress (1.5). Hydrostatic stress showed 
more pronounced dependence on the disorientation angle than von Mises stress. The 
observed stress concentration is high enough to cause localized plastic microdeformation, 
even when the polycrystalline aggregate is in the macroscopic elastic regime. The modelling 
of stresses and strains in polycrystalline materials can identify the microstructures 
(grain-size distributions, texture) intrinsically susceptible to stress/strain concentrations and 
justify the correctness of applied stress state during the stress corrosion cracking tests. 

1. Introduction 
Intergranular cracks found on primary and secondary 
sides of steam generators with Alloy 600 (approxim- 
ately 75% Ni, 15% Cr, 10% Fe, wt %) tubing and 
other Alloy 600 components such as control rod drive 
and pressurizer nozzles, are attributed to intergranu- 
lar stress corrosion cracking (IGSCC). The process of 
intergranular stress corrosion in metal alloys is con- 
trolled by a combination of corrosive environment, 
applied (and/or residual) stress, and a susceptible 
microstructure. The microstructural characteristics 
often cited as affecting the susceptibility of nickel 
alloys to IGSCC in high-temperature water are inter- 
granular [1-14] and intragranular [2] carbides, 
grain-boundary chromium depletion [1, 3, 5, 7, 8, 
10-12, t4-16], impurity segregation [1-3, 8, 10-13, 
17-19], grain size [10,20], texture and cold work 
[10, 20, 21]. The susceptibility to corrosion and stress 
corrosion cracking can also depend on the grain- 
boundary misorientation [22--28]. 

The role of stress in the process of crack initiation 
and propagation is not fully understood, mostly due 
to the fact that there is no clear understanding of 
mechanisms of crack initiation and propagation. 
There is, however, experimental evidence that inter- 
granular cracks in Alloy 600 primarily initiate and 
propagate at locations where a complex state of stress 
exists [20], regardless of the type of loading (static 
or cyclic) [29]. Historically, IGSCC has been studied 
using test specimens whose results are a combination 
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of crack initiation and growth. There exist several 
theories explaining the experimental observations in 
terms of environment chemistry, microstructure and 
stress/strain state: film rupture-slip dissolution 
(oxidation) process [16,30-36], hydrogen-assisted 
cracking [20, 37, 38], internal oxidation [39], and 
composite mechanisms. The experimental evidence 
shows that there is a stress threshold for cracking 
which depends on the proposed stress corrosion 
cracking (SCC) mechanism [7, 40, 41]. Systems with 
thick, brittle oxide films would be sensitive to the 
maximum principal stress; the failure criteria for sys- 
tems with ductile passive films would involve the total 
strain energy (von Mises equivalent stress) [41]. The 
mechanisms involving the formation of intergranular 
bubbles can be sensitive to the hydrostatic pressure in 
the material [41]. There is, however, no published 
experimental evidence that the mechanisms governing 
the crack initiation and propagation are the same; one 
can assume that the slip-related mechanism would be 
controlled by the deviatoric stresses (e.g. yon Mises 
equivalent stress) which are responsible for material 
shearing, and the rupture-type mechanism (no plastic 
deformation) would depend on the hydrostatic stres- 
ses. The current understanding of the role of stress in 
crack initiation is such that the crack initiates at sites 
where a local stress concentration exists [20, 28, 32]. 
Grain boundaries, slip steps, and corrosion pits act as 
stress raisers [28, 32]. Localized plastic deformation 
leads to film rupture and to the nucleation of a crack 
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[28]. Also, it is believed that selective corrosive attack 
is strongly correlated with the non-uniform distribu- 
tion of microstrains [9]. In order to deform material 
microplastically, the local stress must exceed the yield- 
ing stress. A polycrystal is an aggregate of randomly 
(or preferably) oriented grains and under applied 
(and/or residual) stress inhomogeneous stress and 
strain distributions exist [42-45]. The local stress 
state is a superposition of three "types" of stresses 
[-42, 46]: (1) the homogeneous stress state, which is 
averaged over the volume of many crystallites (called 
"macrostress"), (2) the inhomogeneous stress which 
varies within a crystallite due to its interactions with 
the neighbouring grains ("microstress"), and (3) stress 
variations due to lattice defects (dislocations, va- 
cancies, precipitates, etc.) called "sub-microstress". 

The stress fields caused by dislocation pile-ups can 
be calculated analytically for some types of dislocation 
arrays [-47-50]. The magnitude of these stresses can 
be high enough to produce the secondary slip (stress 
relaxation) in fcc crystals over distances of the order of 
the pilerup length [-4.9] provided that the dislocation 
density is sufficiently high. The magnitude of "sub- 
microstresses" is a function (among other factors) of 
dislocation density and local microstress [48]. 

The microstress is the difference between the aver- 
age stress in a particular crystallite and the average 
stress in the polycrystalline aggregate. The magnitude 
of the principal stresses within the crystallite depends 
on its orientation with respect to the applied stress 
tensor and the elastic interactions with the neighbour- 
ing grains. These elastic interactions are functions of 
the degree of elastic anisotropy, the misorientation 
angles between the adjacent grains (texture-depen- 
dent) and the number of neighbouring grains. 

Finally, the macroscopic stress is a superposition of 
residual stresses (mostly due to manufacturing pro- 
cesses) and applied stresses. It is generally accepted 
that on the surface there is a plane biaxial state of 
stress, which becomes triaxial with the crack initia- 
tion. The role of stress state on crack initiation is not 
clear; many SCC tests in high-temperature water envi- 
ronments have resorted to specimens with complex 
stress states (i.e. reversed U-bends) to reduce test 
times. The influence of biaxial, triaxial, and cyclic 
stresses is yet to be determined [41]. 

It has been recognized that the grain-boundary 
misorientation (relative misorientation between adjac- 
ent grains) has an influence on corrosion [23-26] and 
intergranular stress corrosion cracking [51]. A recent 
study [-22] showed that for Alloy 600 the coincident 
site lattice boundaries (CSLBs have the misorientation 
where the two lattices of the adjacent grains have. 
some coincident points) are more resistant to IGSCC 
than general high-angle boundaries (GHABs are 
boundaries with the misorientation angle greater than 
15 ~ ) regardless of the test environment. It was also 
suggested that the grain-boundary character distribu- 
tion affects the crack initiation more than it affects the 
crack propagation. If one is to explain the mechanistic 
aspects of crack initiation in terms of localized plastic- 
ity or rupture-type damage, it is necessary to study the 
stress concentration as a function of grain-boundary 

character distribution (i.e. low-angle grain boundaries 
versus GHABs and CSLBs). The proportion of CSLBs 
for a random polycrystal is relatively small [52] (less 
than 10%). However, if the preferred orientation (tex- 
ture) is present in the material, the proportion of 
CSLBs can be drastically enhanced [-52-54]. It has 
been reported that for Ni-16 Cr 9 Fe alloy the pro- 
portions of CSLBs could be increased up to 51% 
through sequential tensile deformation and heat treat- 
ments [22]. 

This study is concerned with the distribution of 
stresses between individual randomly oriented crystal- 
lites in a "pure" microstructure (i.e. without impurities 
of precipitates) of a single-phase alloy. The local con- 
centrations of stresses at vertices in three-dimensional 
microstructures (grain-boundary triple points at the 
surface in two-dimensional case) were studied as 
a function of misorientation angles and the state of 
applied stress. The "pure" microstructure was selected 
for this study in order to determine the effect of the 
"intrinsic" properties of the microstructure (i.e. single- 
crystal elastic anisotropy and grain topology) on the 
stress distribution. 

2. Model of a polycrystalline aggregate 
2.1. Three-dimensional Poisson-Voronoi 

tessellation 
A three-dimensional microstructure was simulated 
using a Poisson-Voronoi tessellation described in de- 
tail elsewhere [55]. The Poisson-Voronoi tessellation 
represents the microstructure which results from the 
growth of crystals from nuclei randomly distributed in 
a three-dimensional space and which appear simulta- 
neously in time. The grain-growth rate is the same for 
all grains and all directions (i.e. homogeneous and 
isotropic growth); growth ceases for each grain when it 
comes into contact with a neighbouring grain. Such 
a tessellation generates a subdivision of a space into 
an array of non-overlapping convex polyhedra filling 
the space. The topology of such an arrangement of 
grains is equivalent to a fully dense microstructure of 
a single-phase alloy; each face is shared by two grains, 
each edge is shared by three grains and each vertex is 
shared by four grains [56, 57]. The distributions of the 
number of faces, volumes and surface areas for the 
three-dimensional Poisson-Voronoi cells are accu- 
rately described by a two-parameter gamma distribu- 
tion [-55] with the mean values corresponding to the 
experimental observations [56-59]. Also, the mean 
values of dihedral angles (angle between adjacent fa- 
ces) and bond angles (angles between adjacent edges) 
are very close to those required by the equilibrium 
surface tension criteria [60]. Two types of Alloy 600 
microstructure were simulated; one composed of 250 
grains, the other one composed of 500 grains. Fig. 1 
shows a micrograph of an actual microstructure of 
Alloy 600 and a cross-section of the simulated micro- 
structures. 

2.2. Finite element modelling 
The Poisson-Voronoi tessellations were generated 
within a unit cube (Fig. 2) following the algorithms 

2 ~ 1  



O'y 

Figure 2 Unit cube showing grain boundaries and loading condi- 
tions. 
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Figure ] (a) Microstructures of mill-annealed Alloy 600 (after 
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described elsewhere [61]; the simulated microstruc- 
tures contained 250 grains and 500 grains. They can 
be interpreted as two microstructures having the ratio 
of the mean grain sizes approximately equal to 1.25. 
Such a cube also represents the material surface layer 
with the thickness of several grains. Each grain was 
divided into tetrahedral elements having a common 
vertex at the location of the original seed from which 
the grain had been grown. Such a division provided 
for 40-50 finite elements per grain [61]. 

The simulated microstructures had a random ori- 
entation of grains (i.e. no crystallographic texture), 
that is the single-crystal elastic constants were ex- 
pressed in a local coordinate system randomly 
oriented with respect to the sample (global) coordinate 
system. Each set of random orientations were gener- 
ated according to the algorithm presented in the Ap- 
pendix. Because the single-crystal elastic constants for 
Alloy 600 were not available in the literature, they 
were estimated from the polycrystal elastic modulus 
reported elsewhere [62, 63] (E = 203.6 GPa). The 
Zener anisotropy factor A=2C44/(C11 C12) for 
Alloy 600 was assumed to be equal to the average of 
the anisotropy factors for nickel and nickel superal- 
loys Ren6 N4 [-64] and MAR-M200 E64, 65]. The 
numerical value of A = 2.76 was derived for Alloy 600 
and the following single-crystal elastic constants were 
recalculated using the Kr6ner monocrystal-polycrys- 
tal relationship [66]: Cl1 = 232 GPa, C~2 = 148.0 GPa, 
and C44 = 115.9 GPa. The polycrystal elastic moduli 
for Alloy 600 estimated by Kr6ner's [66] aver- 
aging scheme were: Young's modulus E = 203.9 GPa, 
shear modulus G = 78.0GPa, bulk modulus 
K = 176.0 GPa, and the Poisson ratio v = 0.307. 
The elastic moduli derived using the three-dimen- 
sional microstructural model and simulating uniaxial 
tensile and hydrostatic compression tests were 
E = 206.2 GPa  and K = 176.0 GPa, showing an ex- 
cellent agreement with the analytical predictions. The 
temperature dependence of elastic constants was 



not considered because there were no available data; 
limited experimental evidence shows that at 320~ 
(which is the operational regime for Alloy 600 tubing 
in nuclear power steam generators) the Young's 
modulus is lower by approximately 10% than the 
value at room temperature. Also, because Alloy 600 
has a cubic structure, there is no thermal anisotropy. 

The boundary conditions were established in the 
following way. Recognizing that an IGSCC crack in- 
itiates at the surface where a plane state of stress is 
present, a biaxial pressure uniformly distributed on 
the cube faces was applied (Fig. 2). The two unloaded 
surfaces remained free. The analysis of residual stres- 
ses in Alloy 600 components (residual stresses are 
much higher than applied stresses) E67, 68] showed 
that two cases of stress state can be considered as 
"typical": biaxial stress cr~ = cry and cry = 0.02 ~ ("al- 
most" uniaxial tension). The numerical values were set 
as cr~ = 300 MPa, cry = - 300 MPa in the first case 
and cr~ = 500 MPa, cry = - 10 MPa in the second 
case, so that the average macroscopic von Mises stress 
was the same in both cases and equal to 
crm = 505 MPa (which is approximately 70% of the 
tensile strength of a mill-annealed Alloy 600 [9]). Such 
boundary conditions are also interesting from the 
theoretical standpoint, in that they allowed for the 
analysis of the stress distribution as a function of 
loading conditions, i.e. biaxial versus uniaxial stress 
state. The stresses (yon Mises, hydrostatic) at the 
vertices where the grains meet (four grains meet at 
a common vertex in the bulk material, three grains 
meet at the surface) were calculated using MSC/NAS- 
TRAN V.66 finite element package as follows 

Ne 
= (1) 

e = l  

where crgr an element corner stress component, is 
multiplied by W~e, the interpolation factor, and sum- 
med for all elements, Ne, connected to the vertex. 

3. Grain-boundary disorientation angle 
distribution 

A single-phase crystalline material is an aggregate of 
single crystals (crystallites) which have different ori- 
entations in space. In order to characterize quantitat- 
ively a grain boundary (an interface between grains), 
one needs to analyse a general bicrystal. A bicrystal 
system has five degrees of freedom, i.e. five parameters 
are necessary to describe it mathematically [69, 70]. 
The amount of misofientation or the angles necessary 
to rotate the coordinate system of one crystal so that it 
coincides with the coordinate system of the other one 
is described by three independent variables (e.g. three 
Eulerian angles or 3 x 3 matrix of cosines between the 
two coordinate systems). The direction of the grain 
boundary is described by the directional cosines of 
a unit vector normal to the grain boundary. In a gen- 
eral sense, all five parameters need to be specified 
to describe a grain boundary. In material science, 
however, the misorientation angle is often used as 
a measure of the misorientation of the crystallo- 
graphic lattices. If A1 and A2 are the orthonormal 

orientation matrices of two grains creating a grain 
boundary, the misorientation matrix R{ru} where 
i, j = 1, 2, 3 is given as 

R = A~A2 -1 (2) 

The angle and the vector of misorientation are 
given as 

co = a rccos �89  - 1) (3) 

where Tr is trace of matrix, 

1 
[pqr] - 2 sine0 [r3z - r23, r 1 3  - -  r 3 1 ,  r 2 1  - -  r 1 2 ]  

(4) 
The misorientation matrices Ai (and, therefore, mis- 
orientation angles) cannot be determined unambigu- 
ously. For  each pair of grains, there are n different but 
crystallographically equivalent matrices R and angles 
co, where n is the number of elements of the proper 
rotation symmetry group of a crystal (n = 24 for a fc c 
crystal such as Alloy 600). 

The disorientation angle is defined as the smallest 
one from the set of all crystallographically equivalent 
ones. The maximum value of the angle of disorienta- 
tion is 2 arc cos 1/4 (2 + 21/2) = 62.8 ~ which corres- 
ponds to the rotation of 90 ~ about any of the axes 
(1 1 0) of a cubic crystal 1-71]. The distribution of 
disorientation angles in a random aggregate of cubic 
crystals was treated theoretically elsewhere [71, 72]. 
The density function of disorientation angles cal- 
culated for 250 and 500 grains is shown in Fig. 3 
together with the Mackenzie's [72] analytical predic- 
tions. The agreement with the analytical prediction 
improves as the population of grains increases. The 
effect of the surface grain fraction (approximately 60% 
for the case of 250 grains, and approximately 58% for 
500 grains) is small, which is in accordance with the 
results of Garbacz and Grabski [73], who found no 
significant effect of surface grain fraction on the distri- 
bution of the disorientation angle for an aggregate of 
4000 K tetrakaidekahedra. The agreement of the dis- 
tribution of disorientation angles with the analytical 
prediction shows that the Poisson-Voronoi  tessella- 
tion, for which each grain has the orientation assigned 
randomly using the procedure described in the pre- 
vious section, represents a random polycrystal. 

4. Distribution of stresses in a 
polycrystalline aggregate 

The stresses were calculated at vertices where four 
grains meet (three grains at the surface) and in the grain 
interiors at the points corresponding to the location of 
the original "seeds". Two scalar stresses were calculated: 
von Mises stress (second invariant of the deviator 
stress tensor) as relevant to the slip-type mechanism of 
crack initiation and hydrostatic stress (one-third of the 
first invariant of the stress tensor) as relevant to the 
hydrogen embrittlement type of material damage. 

4.1 Disorientation angle-stress 
relationships 

There are six disorientation angles associated with each 
vertex where four grains meet and three disorientation 

2393 



O~ 

o>. t -  

~T 

,4-  
Q 
> 

~3 

re" 

0.05 

0.04 

0.03 

0.02 

0.01 

0.00 

(a) 
0.0 20.0 40.0 60.0 

Disorientation angle (deg) 

> 

0.05 

~. 0.04 
~6 
> .  

0.03 
Q 
::3 

,~ 0.02 
O 

"~ 0.01 ,.,.- 

0.00 

(b) 
0.0 20.0 40.0 60.0 

Disorientation angle (deg) 

i f} 

> .  
o 
t -  
�9 

O-  

LU- 

09 
.>_ 
g 
Q 

re" 

0.05 

0.04 

0.03 

0.02 

0.01 

0.00 

(c) 

0.0 20.0 40.0 60.0 

Disorientation angle ( deg ) 

angles for a grain-boundary triple point on the sur- 
face. In order to analyse the relationships between the 
stresses at the vertices and the misorientation of the 
grains, three measures of the misorientation were 
used: maximum, average, and square average of the 
disorientation angle. Figs 4-7 show the relationships 
between the maximum disorientation angle and the 
yon Mises and hydrostatic stresses for 250 and 500 
grains for different sets of grain orientations and dif- 
ferent loading conditions. Figs 4 and 5 show that the 
character of the von Mises and hydrostatic stress 
distributions does not depend on the set of random 
orientations assigned to the grains. However, the local 
stresses are sensitive to grain orientation. There is no 
simple relationship between the magnitude of the 
stress and the maximum disorientation angle (and 
other measures or misorientation) indicating a strong 
effect of grain topology i.e. the resultant stress at 
a vertex is dictated by the interactions with all neigh- 
bouring grains, therefore it depends on the grain shape 
and volume as well as its orientation. Maximum and 
minimum values of von Mises stress correspond to the 
grain "seeds" (where the maximum disorientation 
angle is zero). The concentration of yon Mises stresses 
at the grain seed (defined as the ratio of the maximum 
stress to the average stress) is approximately 1.54 and 
the stress concentration at the vertex is approximately 
1.49 (Figs 4 and 6). The character of the distribution of 
yon Mises stresses (Fig. 6) is independent of the load- 
ing mode (uniaxial versus biaxial in this case); how- 
ever, the local values of stress, i.e. stresses at particular 
vertices, vary. This indicates the sensitivity of the 
local, microscopic stress at the grain-size level to 

Figure 3 The density function of disorientation angle for (a) 250 
grains, first set of orientations, (b) 250 grains, second set of orienta- 
tions, (c) for 500 grains. ( + ) average over 1 ~ ( ~ )  average over 2 ~ 
(A) average over 3 ~ ( x ) average over 4 ~ ( - - )  theoretical. 
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Figure 4 Dependence of von Mises stress on the max imum dis- 
orientation angle at vertices and grain "seeds" for 250 grains: (a) first 
set of grain oriefitations, (b) second set of grain orientations. Load- 
ing conditions for both cases: c~x = 500 MPa,  c~y = - 10 MPa.  

the macroscopic stress tensor. The extreme values of 
the hydrostatic stress correspond to the vertices where 
the grains meet, not the grain interiors, as was the case 
of von Mises stresses (Figs 5 and 7). These extreme 
values are found for higher maximum disorientation 
angles; however, the highest disorientation angles do 
not correspond to the maximum (nor minimum) hy- 
drostatic stresses. The character of the distribution of 
hydrostatic stresses is insensitive to loading conditions 
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(Fig. 7), however, the spatial distribution of stresses 
depends on the applied stress tensor. The maximum 
hydrostatic stress concentration observed for 500 
grains is 1.7 (Fig. 7). 

4 .2 .  S t r e s s  d i s t r i b u t i o n  o n  a f r e e  s u r f a c e  
An example of the stress distribution at the grain- 
boundary triple points on the free surface as a function 

of the disorientation angle is shown in Fig. 8. The 
maximum stress concentration factors were found to 
be 1.3 for von Mises and 1.6 for hydrostatic stress. 
Figs 9 12 show the distributions of yon Mises and 
hydrostatic stresses on the free surface and their de- 
pendence on the  loading mode and grain orientations. 
Fig. 9 shows that the hydrostatic stress distribution 
on the surface depends strongly on grain orientations. 
However, the microstructural features, such as small 
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grains (for example, the grain marked as A in Figs 1 
and 9) with sharp shapes, act as stress raisers, regard- 
less of their own orientation and the orientations of 
the adjacent grains. The same observations apply to 
yon Mises stresses (Fig. 10): stress distribution is dic- 
tated by the microstructure (grain topology) and the 
grain orientations. The effect of loading mode on yon 
Mises stress distribution on the surface is not signifi- 
cant. As seen in Fig. 12, the character of yon Mises 
stress distribution is very similar for the uniaxial and 
biaxial modes of loading. The distribution of hydro- 
static stress is for the most part not strongly depen- 
dent on the loading mode (Fig. 11) except for the 
locations where small grains with irregular shapes 
(e.g. grains marked as B and C in Figs 1 and 11) act 
as stress raisers; change of loading from uniaxial 
to biaxial causes an abrupt change in hydrostatic 
pressure. Therefore, if the damage criterion based on 

"13 

(a) 0 ~ (b/ 0 ,:b 

Figure 9 Dis t r ibu t ion  of hydros ta t i c  stress on the free surface, s imula t ion  of 250 grains.  Load ing  condi t ions:  cr~ 

cry = - 10 M P a :  (a) first set of g ra in  or ienta t ions ,  (b) second set of g ra in  or ienta t ions .  

= 500 MPa ,  

70 

6 ~ 
o 

"O 

(a) 

: L 

% 
" l  

0 ~, (b} 0 

Figure 10 Dis t r ibu t ion  of von Mises  stresses on the free surface, s imula t ion  of 500 grains.  Load ing  condi t ions:  (a) crx = 500 M P a ,  

cry = - 10 M P a ,  (b) crx = 300 M P a ,  cry = - 300 MPa .  
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a. 

~a) 0 ~ (b) 0 

Figure 1I Dis t r i bu t i on  of  hydros ta t i c  stresses on  the free surface, s imula t ion  of 500 grains.  L o a d i n g  condi t ions :  (a) ~ = 500 M P a ,  

% = -- l0  M P a ,  (b) c~ = 300 M P a ,  % . . . .  300 M P a .  

7 

76, 

7 

o... 

l a )  0 ~b (b)  0 ~b 

Figure t2 Dis t r i bu t i on  of yon Mises  stresses on  the free surface, s imula t ion  of 500 grains.  Load ing  condi t ions :  (a) {~ = 500 M P a ,  

% = -- 10 M P a ,  (b) (y~ = 300 M P a ,  % = -- 3 0 0 M P a .  

yon Mises or hydrostatic stresses was applicable to 
Alloy 600, a uniaxial SCC test would not reflect the 
stress effects due to actual multiaxial loading of a 
component. 

5. Discussion 
The effects of crystal anisotropy on the stress distribu- 
tion have been studied mostly for two-dimensional 
arrays of hexagonal grains modelling polycrystalline 
aggregate [74-78]. McKinstry er al. E74, 75] studied 
numerically the effects of anisotropy on the maximum 
principal shear and normal stress, in an aggregate of 
19 hexagonal crystals of alumina. They found that the 
anisotropic characteristics of the material altered the 
location where the magnitude of the shear stress was 
maximum under isostatic, uniaxial, and thermal load- 
ings. Fu and Evans [761 analysed analytically the 
stress distribution within a grain in a model consisting 

of four anisotropic hexagonal grains embedded in an 
isotropic matrix. The residual stress comprised of two 
principal components: uniform stresses at the grain- 
facet centre (caused by the thermal mismatch between 
the two grains adjacent to the grain boundary) and 
singular stresses near the grain corner. The singular 
stresses displayed a logarithmic dependence on the 
distance from the grain corner 

M is the uniform stress at the grain-facet where c~;.i 
centre, 1 is the grain facet length, x the distance fi'om 
the grain corner, and a, b are functions of elastic 
properties and the misorientation between grains. 
Tvergaard and Hutchinson [771 studied the effect of 
crystal anisotropy on stress distribution considering 
a planar array of hexagonal grains as a model of 
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a polycrystalline ceramic. The stress singularities at 
triple-grain junctions were studied by an asymptotic 
method and by a numerical solution. It was found that 
the nature of the singularity depended on the junction 
geometry and the elastic anisotropies of the grains; in 
some cases, the stresses were unbounded, in others the 
stresses decayed to zero. The numerical solution for 
a cubic material (whose anisotropy was characterized 
by two factors: R = (C12 + 2C~)/Cll = 1.5 and vari- 
ous ratios of (2 = 2C44/C~J for some specific ar- 
rangement of grain orientations (not random), showed 
the stress concentration of the normal stress at the 
triple-grain junction of 1.5. For R = 0.5 the stresses 
decayed to zero at the grain-boundary triple point; 
(2 had less influence on stress distribution. For Alloy 
600, R = 1.64 and Q = 4, which is closer to the first 
case, i.e. stress concentration factor of 1.5; the stresses 
interpolated at vertices in this research showed the 
maximum concentration factors of 1.5 for yon Mises 
and 1.7 for the hydrostatic stresses. The results of 
Tvergaard and Hutchinson [77] were consistent with 
the results of Laws and Lee [78], who also confirmed 
that the stress singularity at a triple point was logar- 
ithmic. The analysis of the stress state in a polycrystal 
by means of contact-problem theory [42] showed that 
the resultant stress state is a superposition of the 
homogeneous stress state and contact stresses at the 
boundaries between misoriented grains. The contact 
stresses oscillate with increasing amplitude as the dis- 
tance to the triple point decreases and, depending on 
the elastic mismatch, can reinforce or counteract the 
effect of the homogeneous stress. In qualitative terms, 
the stress tensor along the grain boundary can be 
expressed as 

~i~ ~ + (6) 

where ~u is the average stress along the cross-section, 
d is the mean grain size, r the distance from the triple 
point measured along the grain boundary and 
constants A and B depend on elastic properties and 
misorientation of adjacent grains. From both Equa- 
tions 5 and 6 it follows that the stress concentration at 
triple points for planar hexagonal grains of uniform 
size depends on the grain size; increase of the mean 
grain size increases the stress concentration factor. 
The current research for three-dimensional arrange- 
ments of grains having a two parameter gamma distri- 
bution of volumes shows that small grains are more 
effective stress raisers. The stress distribution in 
a grain results from the interactions with all neigh- 
bouring grains (14 on average for a single-phase ma- 
terial); however, the smaller grains have fewer faces 
(and neighbours) than the bigger ones, with the min- 
imum number of four. Therefore, the effect of the 
potential extreme contact stresses with one neighbour 
is more pronounced in the case of small grains. 

In general, the stress distribution in a polycrystal- 
line aggregate depends on the grain-size distribution 
and the grain-boundary misorientation distribution 
function. Dikusar et al. [79] used the theory of ran- 
dom functions to analyse the microdeformation of 
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random polycrystals. The model polycrystal was 
composed of the uniform size grains and the in- 
homogeneity of the material resulted from the pres- 
ence of definite boundaries between the separate crys- 
tallites. Assuming the normal distribution density of 
the grains with respect to stress, i.e. assuming that 
almost all (i.e. 99.7%) possible values of stress lie in the 
interval cy _+ 3 S, where cy is the external stress aver- 
aged over all crystallites and S is the standard devi- 
ation proportional to stress 

S = ~ A  (7) 

A = 0.145 KI)~61/(K + 4/3 a)E (8) 

where K is the bulk modulus, G the shear modulus, 
E is Young's modulus, and )~6 = Cll-C~2 2C4~; Cij 
are single-crystal elasticity constants. The term 
(1 + 3A) represents the stress concentration factor due 
to the discontinuity of elastic properties across the 
grain boundary, and for Alloy 600 elastic constants 
cited in Section 2.2 it is equal to 1.2; the higher values 
of stress concentration can occur but with much lower 
probability. The current research shows (e.g. Figs 4-6) 
that for 97% of vertices the von Mises stresses lie in 
the region _+ 20% from the average stress; dispersion 
of hydrostatic stress is approximately _+ 25%. The 
most probable and extreme values of stresses reported 
in the present research are in agreement with the 
analytical and numerical results reported in this sec- 
tion. Higher stress concentration values found in the 
three-dimensional microstructure can be caused by 
the lognormal distribution of grain sizes. 

6. Conclusion 
The stress distribution in a polycrystalline material 
(Alloy 600) was studied using a topologically correct 
microstructural model. The distributions of von Mises 
and hydrostatic stresses, which could be important 
factors when studying the IGSCC initiation, at the 
grain vertices, were analysed as a function of micro- 
structure, grain orientations and loading conditions. 
The grain size, shape, and orientation had a more 
pronounced effect on stress distribution than the 
loading conditions. The stress concentration factor 
was higher for hydrostatic stress (1.7) than for von 
Mises stress (1.5) for Alloy 600 (Zener anisotropy 
factor A = 2.76); hydrostatic stress showed more pro- 
nounced dependence on the disorientation angle than 
von Mises stress. The observed stress concentration is 
high enough to cause the localized plastic microdefor- 
mation, even when the polycrystalline aggregate is in 
the macroscopic elastic regime. The modelling of stres- 
ses and strains in polycrystalline materials can identify 
the microstructures (grain-size distributions, texture) 
intrinsically susceptible to stress/strain concentra- 
tions and justify the correctness of applied stress state 
during the SCC tests. 
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Appendix. Computing components of 
a random unit vector 

The problem of randomly generating the local coordi- 
nate systems (grain orientations) expressed in terms of 
a global coordinate system (fixed to the unit cube) is 
equivalent to calculating random orthogonal 3 x 3 
matrices whose elements are the directional cosines 
between the local and global coordinate systems [71]. 
This problem can be reduced to computing the ele- 
ments of a random unit vector [1]. The cosine of the 
angle between a fixed direction and a random direc- 
tion is uniformly distributed on the range ( -  1,1). 
Therefore, if ~, the cosine of the co-latitude, is chosen 
at random in the range ( - 1,1) and the longitude ~ is 
chosen at random in the range ( - re, re), the random 
unit vector is given by 

[ _+ (1 - ~2)1/2 cos 4, -+ (1 - ~a)1/2 sin~,  ~] (1) 

where the + sign is assigned randomly. 
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